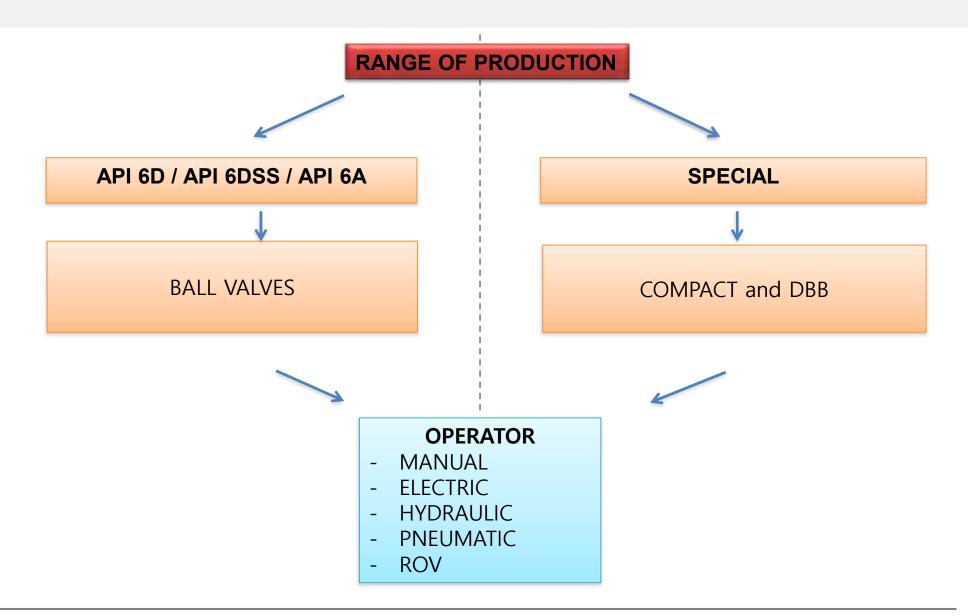
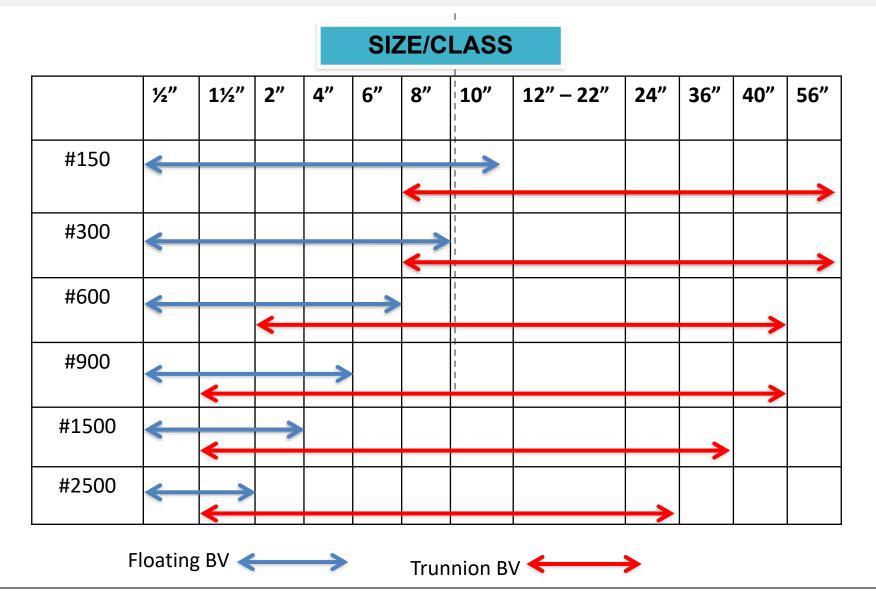


Presentation for


Ball Valves, Double Block & Bleed


Process Ball Valves

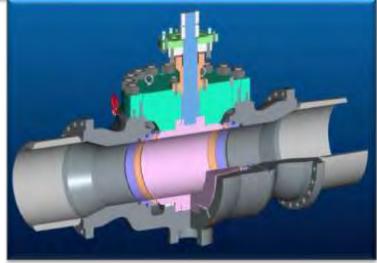
Process Ball Valves

Ball Valves Product Range

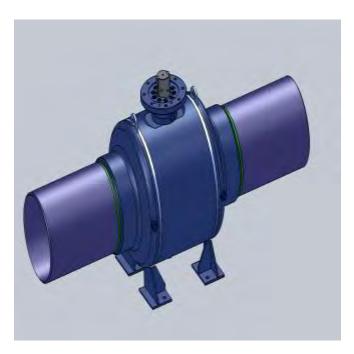
WK-LOK Corporation

Trunnion Side Entry Split Body

- Bolted Body All Forged Construction
- Soft / Metal Seated
- Self Relieving or Double Piston Effect Seat
- Anti Blow-Out Stem
- Double Block & Bleed
- Fire Safe API 6FA API 607 ISO 14097
- Antistatic Device
- Emergency Sealant Injection to Stem & Seats
- Materials in Accordance to NACE MR 01.75
- Above / Below Ground Installation



Trunnion Top Entry


- Bolted Bonnet Cast Body/Forged Bonnet and Trim
 - (forged body available on request)
- Soft / Metal Seated
- Self Relieving or Double Piston Effect Seat Anti
- Anti Blow-Out stem
- Double Block & Bleed
- Fire Safe API 6FA API 607 ISO 14097
- Antistatic device
- Emergency sealant injection to stem & seats
- Materials in accordance to NACE MR 01.75
- Above / below ground installation
- Full in-line maintenance, either with vertical and horizontal stem

Fully Welded

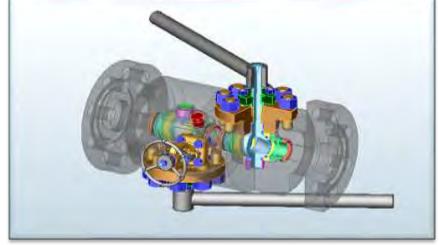
- Welded Body Cast or Forged body and closure
- Soft / Metal Seated
- Self Relieving or Double Piston Effect Seat Anti
- Anti Blow-Out stem
- Double Block & Bleed
- Fire Safe API 6FA API 607 ISO 14097
- Antistatic device
- Emergency sealant injection to stem & seats
- Materials in accordance to NACE MR 01.75
- Above / below ground installation

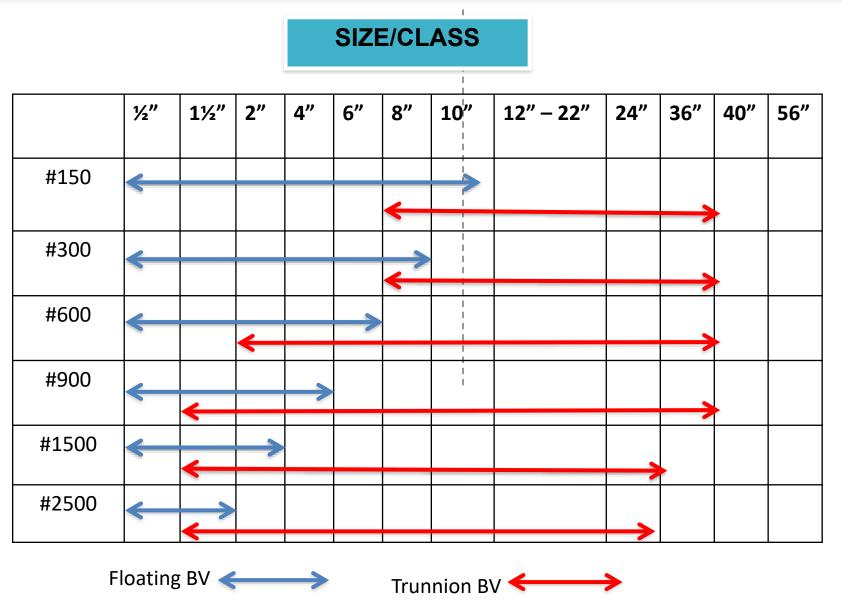
Compact

- Split body construction and DBB
- All forged construction
- Soft Seated or Metal Seated
- Self Relieving or Double Piston Effect Seat
- Anti Blow-Out stem
- Fire safe API 6FA API 607 BS 6755 Part.2
- Antistatic device
- Materials in accordance to NACE MR 01.75
- Short face-to-face dimension to suit special needs such as on vessels or platforms where weight and physical dimensions are critical.

6" to 14" #900 Metal-to-Metal CARIMIN / PETRONAS CARIGALI 8 weeks delivery

30" & 36" #600 Metal-to-Metal (leakage A) and Soft Seated ENI INDONESIA 11 weeks delivery




Process Double Block and Bleed

- Body / Forged Bonnet and Trim
- Split Body or Top Entry
- Soft / Metal Seated
- Self Relieving or Double Piston Effect Seat
- Anti Blow-Out stem
- Double Block & Bleed
- Fire safe API 6FA API 607 ISO 14097
- Antistatic device
- Emergency sealant injection to stem & seat
- Materials in accordance to NACE MR 01.75
- Above / below ground installation
- Full In-Line Maintenance either with vertical and horizontal stem (when Top Entry)

Process DBB Valves Product Range

IDK-LOK Corporation

DBB COMPACT 6" #600

Soft Seated with TCC coating PETROBRAS FPSO-68 10 weeks delivery

2" #1500 Metal Seated REPSOL 6 weeks delivery

Ball Valves and DBB Valve Construction Materials

- CARBON STEEL
- STAINLESS STEEL
- DUPLEX AND SUPERDUPLEX
- HASTELLOY
- INCOLLOY
- INCONEL
- TITANIUM
- ANY CRA CLADDING

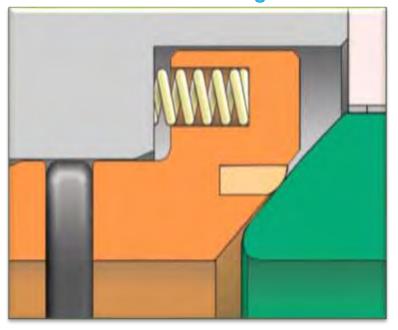
We are ready to supply any product to suit our client's specific requirements in all service conditions

Self Relieving or Single Piston Effect Seat

Independent floating spring loaded seats are in contact with the ball when the pressure comes for m the line to provide an effective tight seal even at low differential pressures. When there is an ov er pressurization into the body (due to thermal effects or leakage) one or both the seats release th e overpressure into the line avoiding the body blow up.

Double Piston Effect Seat

Independent floating spring loaded seats are always in contact with the ball to provide an effective tight seal even at low differential pressures. Body cavity over pressure in this case can be released through a relief value to atmosphere.


Upstream Seat Self Relieving and Downstream Seat Double Piston Effect

A combination of double piston effect seat on the downstream side and single piston effect on the upstream seat is available on request. This configuration maintains the sealing capacity of the valv e in case of failure of the up stream seat and release of the body cavity over pressure through the up stream seat.

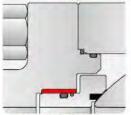
Ball Valves and DBB Valve Seat Configuration

SOFT & METAL SEATED DETAIL

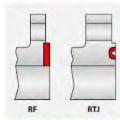
Soft Seated Design

Metal Seated Design

Features and Advantages


DK-LOK in order to comply with the latest market requirements and always looking for meeting most stringent services which are now arising in development of new fields, is now able to offer, in addition to Ball Valves for standard service, special design to suit the new challenges such as:

- SUBSEA VALVES: designed in accordance with API 6DSS suitable for installation up to 5.000 meters depth. The valves are equipped with subsea actuators and/or ROV interface to allow operation while on sea-bed.
- VERY HIGH TEMPERATURE (up to 538° C or 1000° F): developed to suit the most demanding services like: hot oil, steam, hot condensate, coke, ash, petrochemical, etc. The design foresees use of bellows to seal and energise seats, extended bonnets to allocate adjustable packing, Graphite seals and metallic bearings. Materials for surface hardening are at the forefront of the industry technology (e.g. metallic carbides, Ceramics, metallic nitrides etc.)
- CRYIOGENIC SERVICE (up to -196° C): developed to suite requirement for LNG plants and ships, the valves have special features such as stem extension for easy operation and special sealing such as KEL-F or similar.
- CLADDED VALVES: designed for sour environment and able to reduce cost impact without compromising on quality and technical performance. Cladded valves are basically supplied in lieu of solid CRA materials (Nickel Alloys such Inconel and Incolloy) manufacturing valves in Carbon Steel with a CRA weld overlay of 3mm thickness (or more in case of special requirements.


Weld Overlay

Weld Overlays / Cladding and Internal Lining

Trunnion Type Only

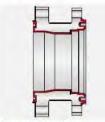
Seat Pocket Welded Overlay 3 mm finished thickness Dynamic seal area.

End Flange Welded Overlay 3 mm finished thickness Static seal area.

Cladding is designed for sour environment and is able to reduce cost impact without compromising on quality and technical performance. Cladded valves are basically supplied in lieu of solid CRA (Corrosion Resistant Alloy) materials (Nickel Alloys such as Inconel and Incoloy) If requested, we can manufacture valves in Carbon Steel with a CRA weld overlay of 3 mm thickness (or more in case of special requirements).

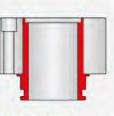


Stem Pocket Welded Overlay 3 mm finished thickness Dynamic seal area.



Body Weld Overlay On All Wetted Parts 3 mm finished thickness.





Seals Area Welded Overlay 3 mm finished thickness Dynamic and static seals area.

Closure Weld Overlay On All Wetted Parts 3 mm finished thickness.

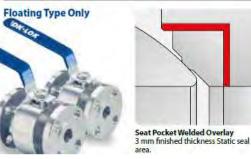
Gland Plate Weld Overlay

Body Internal Lining On All Wetted Parts

ROFICE

min, 300 microns thickness.

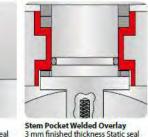
On All Wetted Parts


3 mm finished thickness.

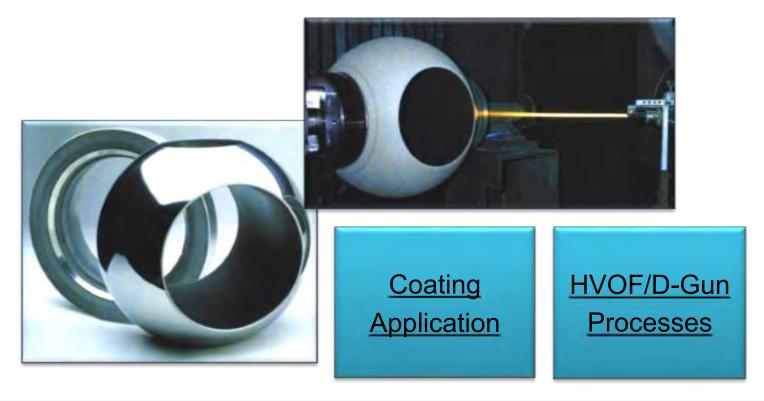
Ball Fully Cladded 3 mm finished thickness.



Closure Internal Lining On All Wetted Parts min. 300 microns thickness.



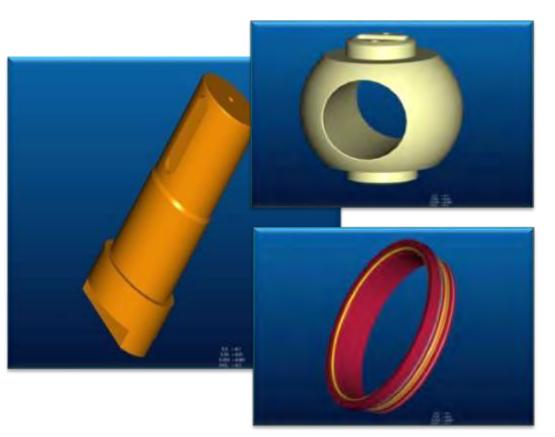
Gland Plate Internal Lining On All Wetted Parts min. 300 microns thickness.


3 mm finished thickness Static area.

Tungsten and Chromium Carbide Coatings

Applied Thickness :

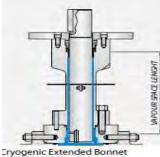
- Tungsten Carbide : 150 \div 400 μ (wear, corrosion)
- Chromium Carbide : 150 μ (wear, corrosion, temperature)

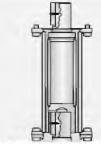

Electrloess Nickel Plating

E.N.P. is Normally Applied to Obtain

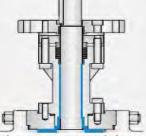
- Wear Resistance
- Corrosion Resistance
- Low Friction

Applied Thickness :

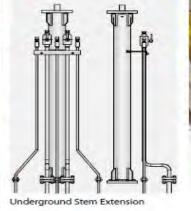

- 0.025 mm.
- 0.050 mm.
- 0.075 mm.
- HV (64 HRC) with 520 $^\circ\,$ C H.T.
- + 950 HV (68 HRC) with 400 $^\circ\,$ C H.T


Stem Extensions for Special Applications

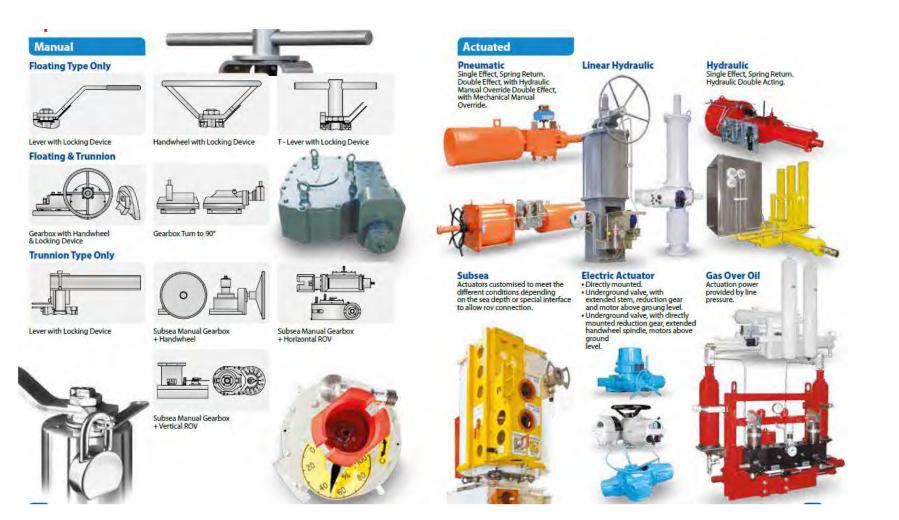
Extended Bonnet & Stem Extension

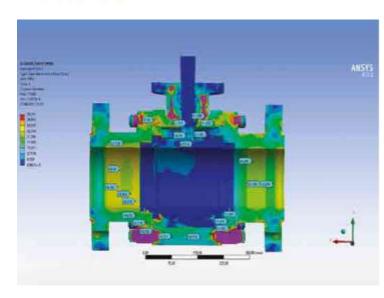

nsulated Extended Stem & Underground Stem Extension can be provided making the valve suitable for inaccessible areas or buried service. The piping of the grease injection system and of the vent and drain connections are extended to the top of the extension to ease their access. Cryogenic Extended Bonnet With Drip Collar & High Temperature Extended Bonnet Live Load Packing can be provided making the valve suitable for extreme temperature according to customer requirements.

With Drip Collar



Insulation Extended Stem


High Temperature Extended Bonnet Live Load Packing


Operators

WK-LOK Corporation

Quality Assurance

ANSYS

Mechanical tests · Tensile Test

- Hardness Survey
- Impact Test
- Bend Test

Other test

- Dimensional and Surface Coating Check
- Ultrasonic & Radiographic Inspection (UT & RT)
- Liquid Penetration Control (PT)
- Magnetic Particle Control (MP)
- Other Non-Destructive Examinations (NDT)
- Hydraulic, air, gas and fugitive emission (FET) test

Special Requests

- NACE Certificate For Sour Service
- Fire Safe Test According To API 6FA, API 607

IDK-LOK Corporation

API 6D Certificate

WK-LOK Corporation

API 6DSS Certificate

IDK-LOK Corporation

Sample of ISO TAT Certificate

DNV.GL

DWL NU. DWV_GL-2018-DKUK_FET-003

Clast . Dif-Lok Corporation

Locieton of rest : Via Ponte Nabitry 104/100, 25033 Chingtre (85) 11/4LIA Dam of test : Finny 29 January to 86 February 2018

We hereby declare that,

at request of Mesore DK-Lok Corporation the undividgeed GLIS Surveyor did attinuit at the Testing Plant CMD Syll. - Via Ponte Febraro 104(106, 25033 Cologne (85) ITALIA on date From 29 January to DS February 2018, for the purpose of witnessing the following :

PROTOTYPE TEST FOR VALVE ACCORDING TO ISO 15848-1 2nd Edition 2015

1-) Valve Specification :

Customer :	DK-Lok Corporation	
Valve size & type :	16" Ball Valve Side-Entry Trunnion FB RF	
Material of Valve (ASTM A 350 LF2	
Velve class :	600 lbs	
Model number :	VBST-FE-18-800-01	
Valve tag 1	11	
Stem diameter :	Ø 80 mm	
Body - Clasure Seals	1 + 1 Q-ring WTON-B AED + Graphile	
Body - Cover Seal :	1 + 1 Q-ring VITON-B AED + Graphite	
Trunnion Seal :	1 + 1 O-ring VITON-B AED + Graphile	
Stem Seal :	1+1 During WTON-B AED + Graphite	

2-1 Test Condition :

Test pressure :	102.1 Low Temp barg + 102.1 RT barg + 97.6 High Temp barg
Task medium (Holium gas of 97 % minimum purity
Test temperature 1	-46 + RT + 200°C (RT qualities the valve in the range -29°C + +40°C)
Test equipment :	Overlikon Leybold PHOENIX L 300 EQUIPMENT SERIAL NR.: 90001081504

seemaalister voordindaamai voorgine baka 30 Sale agala ole Dong 70 k. 14 - Orenaatis (1994) Ooglede Dane (1998) Ole (1998) Sale (1998) Sale (1998) Ole (1998) Sale (1998) Sale (1998) Ole (1998) Sale (1998) Taana (1998) Sale (1998) Sale (1998) Sale (1998) Taana (1998) Sale (1998) Sale (1998) Sale (1998) Taana (1998) Sale (1998) Sale (1998) Sale (1998) Sale (1998) Taana (1998) Sale (1998) S

DNV.GL

Com. No. DWY IR: 20180 DRUK FET-DUIL

3-) Condition for Cycling Test :

Te	sting Cycle for Glass CO2	
Number of step test cycles RT :	4 + 2 (For CO1) + 2 (For CO2)	
Number of cycles at room (expensions (RT) :	200 + 10 (For CD1) + 1590 (For CO2)	
Te	sting Cycle for Class CO2	
Number of step test cycles High Temp. (2 (For CO1) + 1 (For CO2)	
Number of cycles at high temperature :	100 (For CO1) + 500 (For CO2)	
Te	sting Cycle for Class CO2	
Number of stop test cycles Low Temp.	2 (For CO1) + 1 (For CO2)	
Number of cycles at Low temperature :	100 (For CO1) + 500 (For CO2)	

4-) Documentation Used :

Industrial Valves - Measurement test and qualification procedures for Fugitive emission-Spec. 150 15848/1 2r3 Edition 2015

Conversion factor in accordance of EN 1779 annex B.

5-1 Test Results :

In view of the results shown on the test report n° VBST-FE-16-600-01 and regarding the test method described above, the tested valve can be considered conform at the ISO 15846-1 according to the following description:

	Tightness Class,	Endurance Class	Temperaiture Class	Test Pressure	
ISO FE	BH	CO2	+45°C - 200°C	600 lbs	

Fage 2 of 2

Sample of Fire-safe Certificate

	DNV·GL
Cert. No. DNV_GL	2017-DKLK_FTC-020-A
Olienti Location of test : Date of test :	DK-Lok Corporation CMD S.r.I Via Ponte Fabbro 104/106, 25033 Cologne (BS) ITALY 11 September 2017
deputed for the t	ers DK-Lok Corporation the undersigned GLIS Surveyor did attend at the Plan ests CMD s.r.l. located in Via Ponte Fabtro 104/106, 25033 Cologne (8S) - ITALY on er 2017, for the purpose of witnessing the FIRE TEST on the following valve

Enclosed is a sectional drawing of the valve under test complete with a list of materials = Drawing / Figure N° : DK-FS-API6FA-20

The following tests were carried out!

- The valve was subjected to full hydrostatic (water) and gas tests at ambient temperature with Satisfactory results, Tests were in accordance with API 6D 24th Edition 2014.
- 2-) The valve was fire tested according to API 6FA Ed. 1999.
- 3-) The valve was completely disassembled and all components were found in good conditions with exception of the Soft Seat and Soft Seats that were damaged.
- Herewith attached and duly endorsed the following documents = Fire Test Report N^p: FS-20-API6FA Drawing / Figure N^p: DK-FS-API6FA-20

CONCLUSION :

On the basis of test results the BALL VALVE SIDE ENTRY TRUNNION 16" Class 600lbs -Carbon Steel passed satisfactorily the fire safe test.

IDK-LOK Corporation

UNV to Impletence, vellesween 1, 0 and 200, 1122 Healt, Norway, 1st. a-12 57 57 55 50 wegg group com

Germaniacher Lloyd Industrial Services Italia Sel Sowe legisle: Via Ennuy Part M- Monecote (Italia) Contais Sector 6 99.0000 v.y. Torgisten Energie di Mono, P., e C.F. Llosori 50152, A.E.A. Leorati Despuise Coordinativa di Carriamatiche Leyd Italiaana Services Content

FIRE-SAFE CERTIFICATES BY DNV-GL

TYPE OF VALVE	MATERIAL	SEAT MATERIAL	RATING	SIZE
				2"
			1500	6"
			150%	14"
				16"
				2"
		PTFE	600#	6"
\$		2.0 ·		14*
ŭ i				16"
				2" 6"
0			1500#	14"
BALL VALVE TRUNNION 3 PIECES	FERRITIC			16"
-	renoric		1	2"
D _				6"
			150#	14"
(1)				16"
7			-	2"
~		DEVLON	600#	6"
0		DEVEON	OU OW	14"
$\underline{\simeq}$				16"
7				2"
<u> </u>			1500#	6"
2				14"
-				16*
_				2"
~			150#	14-
				16"
1				2"
			1000	6"
	DUPLEX	PEEK	600#	14"
_				16*
				2**
A			1500#	6"
			13000	14"
				16"
			1 2 2 1	2"
			150#	6"
-			1	14" 16"
			-	
-	STAINLESS	100 million (100 million)		2" 6"
	STEEL	METAL	600W	14"
	STEEL		1	16"
				2"
			1.00000	6"
			1500#	14"
				16"
TOP ENTRY	FERRITIC	METAL	600#	16"
				8"

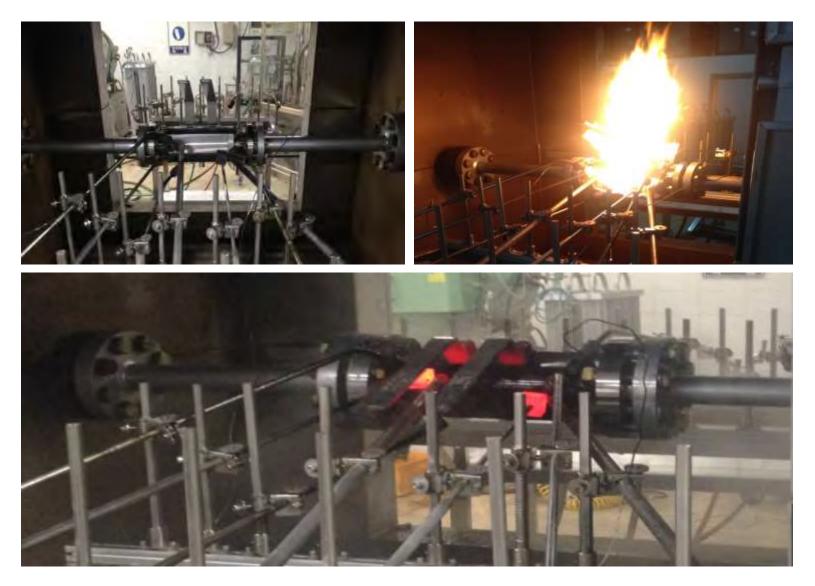

* Other Sizes upon Request

Sample of Material Certificate 3.1

fuite e Purcha Purcha Comm	rate No di Istue Isto Order No Isto Order No Isto Order No Isto Order and Fr	Sheir (ess.	117 (11) Shuar San	s flor Nat. F			STORE LAN		NSP	53	Accor	ding	to EN	10204	3.1	TE	-th					Millings 1 millings		q and the	Ak COR	막 추석회A PORATIO) - 이아 57-911-014 ::1
liu: No.	Sana Ali Pa	no A Sia n No Material No.I	Quar The FCS	Hoat No	Man #1	Tanal	: T:SL02 0 YS T3 Sm K/3 306 SJ	Fad Cogel 5 EL 9 %		++ +++4 	<u>с</u> 3	4 9 M 2 Z	i the i P	-ics (3 5 - 1 - 16	- Ni - Ni - 1 K 100	ition (s Mai t Z	70 N 1		Hard -neg Hilli		natic Task Clai 'Contine Ther	: (psk) EN: : \$:3	Tempi Seign	Cifinal Test Test Test	sig: E-M7	Remaiks
i.	Sames Sigel Ba gmm**4- Sames Stoel Ba John **4- Sames Sigel Ba John **5- Ban Peter Sigel Deter Sigel Deter Sigel Deter Sigel Deter Sigel Deter Sigel	488 127.4 V 2730 mm R 79 12.5 :: 9396mm HEx15 8 x 7001mm Tube O D 144 T ha O D 144 look Satur Fanula	9 3 3 1550 1650	204276 527536 524671 206256 524671	173 C CF3 : BUZ 1(MU7-2 GP2 BJZ	1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	11	1 2 a 1	1 + + +	11 18	8 .67	x 1 12	15 16	5 30l 4 101	2015 3 2015 3 2016 3 2016 2016 3 2016 3 2016 3 2016 3 2016 3 2016 3 2016 3 2016 3 2010	7. 8	1 12			7					54136, ffa 26044 23 26044 23 26044 23 26044 23
Ski n	reactment e to formulat R.J. Hist Youk N.J. JUPose N.J. Schemati	SAULES or getted - Suit- Care Companition Dir (Stats Li-sui Annya othe ACAPT Dir (Stat Lover) - Annya othe ACAPT Dir (Stat Lover) - Annya other - Annya other	erse alle d 2 miller Milleric Hank	Direction Stoccoux Alect	is Dermak data 2. istanla		94 T 191 J 192 J	ed Gran Soo Line ort Pondes og I	venskon Tel mojartik E Havstikov I Avitski Avitski	d ११२ ८२३ म		2	or es	1 1. 1.	Scrip	an Tw Inter Contra Contra State (Contra State (Contra Non O	and Che South Verter and Che South Verter Hou Berry Hou Berry	e test ha micification micification test ha test ha te	pa land IZ 1955 mast ch We awe 6 4 1 1	So by Ra AC 2 (MQ analysis becise to CPB (G 6 X1H MAD	cave bee of by STE 1, BUZ	d MO S n perfer CKarea				
4	t Geef <i>RetP</i> /KCosie en lif cate: No → N - S (N-31 Lap: Date + Mar 11) 2- O 11-04(3-1)	(850N) (ME HE 860(491) ATION	AND DE	TOPY THAT TH S SUB CONT DOMATED DY	RACTORS 4	REDY C	OVPLANC	WITT		rm.s		1.89	115.4 9												ot. Man	6, 2017

WDK-LOK Corporation

Hydrostatic Test


450 Tons Test Bench

1200 Tons Test Bench

Fire Safe Test

WK-LOK Corporation

Sales References

NO.	CLIENT	PROJECTS	PROJECTS END USER		SIZE	CLASS	DELIVERY FROM DRAWING APPROVAL	
1	Mavain Energy SDN BHD	PTSC YARD FACILITIES PROJECT	PETRO VIETNAM	CRY BALL Valves CRY BALL Valves	1⁄2" 1"	800 150	10 weeks	
2.1	PT EAST INFINITA	ENI PROJECT (SUPPLY GOODS OF HOT TAP)		BALL Valves BALL Valves	30" 36"	600 600	11 weeks	
2.2	PT MITRA GALPERTI	ENI PROJECT (GOODS SUPPLY OF VALVES FOR BEM)	eni muara bakau b.v.	BALL Valves BALL Valves BALL Valves BALL Valves BUTTERFLY Valves CHECK Valves	30" 36" 36" 36" 30"/36" 30"/36"	600 600 600 600 600 600	11 weeks	
3	ALIOGAZ KUKUH SDN BHD	REPSOL PETROLEUM PROJECT	REPSOL PETROLEUM	DBB Valves	2"	2500	6 weeks	
4	NTA-Prom Ltd.	Vysotsk lng terminal Project	GAZPROM	CRY BALL Valves HT BALL Valves	2" 2"	150 150	10 weeks	
5	ACCUTECH	FPSU P68 PROJECT	PETROBRAS	COMPACT DBB Valves	6"	600	10 weeks	
6	aliogaz kukuh Sdn Bhd	Dulang Piping Upgrade Project	PETRONAS	BALL Valves BALL Valves BALL Valves BALL Valves	6" 10" 12" 14"	900 300/900 300/900 900	6 weeks	
7	PT MITRA GALPERTI	ENI PROJECT (BEM)	eni muara bakau b.v.	BALL Valves	3⁄4"	800	4 weeks	

Sales References

NO	CLIENT	PROJECTS	end user	ITEMS	SIZE	CLASS	DELIVERY FROM DRAWING APPROVAL	
8	ACCUTECH	FPSU P68 PROJECT	PETROBRAS	BALL Valves	1"/ 1-½"	6000psi	12 weeks	
				CHECK Valves	1-1/2"	6000psi		
9	ACCUTECH	FPSU P68 PROJECT	PETROBRAS	BALL	1"	10000psi	12 weeks	
10	TRANSWATER	SAINT MAINTANCE & UPGRADE PROJECT	PETRONAS	BALL	10"	600	12 weeks	
11	TRACE_ADCO	NEB PRODUCTION FACILITIES	ADNOC	TOP ENTRY 8 ITEMS	5-1/8"~20"	600~10000psi	24 weeks	
				BALL - 61 ITEMS	1/2"-24"	150~900		
12	NTA-Prom Ltd.	VYSOTSK LNG TERMINAL PROJECT	GAZPROM	BALL Valves	2"	300	8 weeks	
13	Rectus Polska	ZM-06/H1695-18	HPE8 Poland	DBB Valves	1" & 1 ½"	600	10 weeks	
14	ACCUTECH	FPSU P68 PROJECT	PETROBRAS	COMPACT DBB Valves	4" & 10"	150~1500	14 weeks	
15	TRANSWATER	Saint Maintance & Upgrade p Roject	PETRONAS	BALL Valves	20"&24"	600	10 weeks	

Sales References

NO	CLIENT	PROJECTS	end user	ITEMS	SIZE	CLASS	DELIVERY FROM DRAWING APPROVAL
16	ALIOGAZ KUKUH	Dulang Piping Upgrade Project	PETRONAS	BALL Valves	6~14"	900	10 weeks
17	NTA-Prom Ltd.	VYSOTSK LNG TERMINAL PROJECT	GAZPROM	DBB Valves	1"	150	8 weeks
18	ACCUTECH	FPSU P68 PROJECT	PETROBRAS	DBB	1"	2500	8 weeks
19	ALIOGAZ KUKUH	Dulang Piping Upgrade Project	PETRONAS	BALL Valves	6~14"	150/300	8 weeks
20	TRANSWATER	Saint Maintance & Upgrade Project	PETRONAS	BALL Valves	2" x 1 ½	900	12 weeks
21	ALIOGAZ KUKUH	Dulang Piping Upgrade Project	PETRONAS	BALL Valves	6"	300	6 weeks
22	NTA-Prom Ltd.	JSC Yamal LNG Project	YAMGAZ	DBB	2"	600	10weeks
23	BE INDUSTRIES INC.	ICHALKIL PROJECT	ICA/FLUOR	BALL Valve	2"/10"	API 10000	10weeks
24	TRACE_ADNOC	ADCO Bu Hasa replacement	ADNOC	ACTUATED BALL Valve	12"/18"	300/900	24weeks
				BALL Valve	12"/16"	150/300	12weeks

